Thursday, June 16, 2016

multilevel multiple imputation

//Imputation
//LG5.0//
version = 5.0
infile 'C:\data\blood\elsa0246LGb.txt'

model
title sysvalimpute;
options
  maxthreads=all;
  algorithm
  . . .
  quadrature  nodes=6;
  missing  includeall;
  output parameters=first;
  outfile 'bloodcomplete.txt' imputation=20
     keep othercov;
variables
  caseid idauniq;
  dependent sysval continuous;
  independent age, she, intermed, managerial, msingle, ...;
  latent
     rint continuous 8, rslope continuous;
equations
  sysval <- 1 + (1) rint + age + (1) rslope age + age age + ...;
  rint;  rslope;  rint <-> rslope; sysval;
{
 85.16273763812144
 1.26193281333455  ...
 183.2066291256809
}
end model

//Analysis
//LG5.0//
version = 5.0
infile 'C:\data\_codeELSA\bloodcomplete.txt'

model
title sysfrn3;
options
  maxthreads=all;
  algorithm
  . . .
  quadrature  nodes=6;
  missing  includeall;
  output
     parameters=effect standarderrors estimatedvalues=model probmeans=model predictionstatistics;
variables
  imputationid imputation_#;
  caseid idauniq;
  dependent sysval continuous;
  independent age, she, intermed, managerial, msingle, ...;
  latent
     rint continuous 8, rslope continuous;
equations
  sysval <- 1 + (1) rint + age + (1) rslope age + age age + ...;
  rint;  rslope;  rint <-> rslope; sysval;
{
 87.23514967682135 ...
 1.215938330896753
}
end model

0 Comments:

Post a Comment

<< Home