multilevel multiple imputation
//Imputation
//LG5.0//
version = 5.0
infile 'C:\data\blood\elsa0246LGb.txt'
model
title sysvalimpute;
options
maxthreads=all;
algorithm
. . .
quadrature nodes=6;
missing includeall;
output parameters=first;
outfile 'bloodcomplete.txt' imputation=20
keep othercov;
keep othercov;
variables
caseid idauniq;
dependent sysval continuous;
independent age, she, intermed, managerial, msingle, ...;
latent
rint continuous 8, rslope continuous;
equations
sysval <- 1 + (1) rint + age + (1) rslope age + age age + ...;
rint; rslope; rint <-> rslope; sysval;
{
85.16273763812144
1.26193281333455 ...
183.2066291256809
}
end model
//Analysis
//LG5.0//
version = 5.0
infile 'C:\data\_codeELSA\bloodcomplete.txt'
model
title sysfrn3;
options
maxthreads=all;
algorithm
. . .
quadrature nodes=6;
missing includeall;
output
parameters=effect standarderrors estimatedvalues=model probmeans=model predictionstatistics;
variables
imputationid imputation_#;
caseid idauniq;
dependent sysval continuous;
independent age, she, intermed, managerial, msingle, ...;
latent
rint continuous 8, rslope continuous;
equations
sysval <- 1 + (1) rint + age + (1) rslope age + age age + ...;
rint; rslope; rint <-> rslope; sysval;
{
87.23514967682135 ...
1.215938330896753
}
end model
0 Comments:
Post a Comment
<< Home